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Abstract

Social scientists are increasingly turning to unstructured datasets to unlock new
empirical insights, e.g., estimating causal effects on text outcomes, measuring beliefs
from open-ended survey responses. In such settings, unsupervised analysis is often of
interest, in that the researcher does not want to pre-specify the objects of measurement
or otherwise artificially delimit the space of measurable concepts; they are interested
in “discovery.” This paper proposes a general and flexible framework for pursuing
discovery from unstructured data in a statistically principled way. The framework
leverages recent methods from the literature on machine learning interpretability to
map unstructured data points to high-dimensional, sparse, and interpretable “dictionaries”
of concepts; computes (test) statistics of these dictionary entries; and then performs
selective inference on them using newly developed statistical procedures for high-
dimensional exceedance control of the k-FWER under arbitrary dependence. The
proposed framework has few researcher degrees of freedom, is fully replicable, and is
cheap to implement—both in terms of financial cost and researcher time. Applications
to recent descriptive and causal analyses of unstructured data in empirical economics
are explored. An open source Jupyter notebook is provided for researchers to implement
the framework in their own projects.

1 Introduction

Empowered by recent developments in machine learning and AI, researchers in the social
sciences are increasingly leveraging sources of unstructured data—such as text, images,
videos, and audio—in quantitative analyses. In economics, interest in unstructured data
sources is especially widespread, ranging from using speech recordings from FOMC meetings
to better understand monetary policy [Gorodnichenko et al., 2023]; to using videos of start-
up pitches to study entrepreneurship and investment [Hu and Ma, 2025]; to using open-ended
survey questions to probe the economic behavior and beliefs of individuals [Haaland et al.,
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2024]; to using mug shots to study judicial decisionmaking [Ludwig and Mullainathan, 2024];
to using visual art or written narratives to infer long-run living standards [Gorin et al., 2025,
Lagakos et al., 2025]; to using interview transcripts to better understand the impacts of RCT
treatments [Bergman et al., 2024, Krause et al., 2025].

The promise of these unstructured data, fundamentally, is that they offer new opportunities
to measure social phenomena that were previously unmeasurable. This includes both measures
that a researcher is capable of pre-specifying as well as those that a researcher is not,
and instead would like to “discover.” When modern AI/ML methods are brought to bear
on these goals, the former falls under the heading of “supervised learning,” whereby the
researcher typically makes predictions of their ex-ante known quantity of interest using
the unstructured data as features, and the latter falls under the heading of “unsupervised
learning,” which is less amenable to a prediction-based framework, and demands that AI/ML
methods uncover latent structure in the unstructured data with minimal researcher input.
Though new statistical and econometric frameworks have recently become available for
interpretable and statistically principled analyses of unstructured data in the supervised
learning setting (e.g., Angelopoulos et al. [2023], Ludwig et al. [2024], Carlson and Dell
[2025]), it is an open question as to how best perform interpretable and statistically principled
analyses of unstructured data in unsupervised learning settings that emphasize discovery.
The framework proposed in this paper provides one possible answer to this open question.

Specifically, this paper proposes a general framework for conducting interpretable and
rigorous statistical inference on unstructured data in the following way, starting from an
unstructured dataset {Zi}ni=1:

1. Convert unstructured data to dictionary feature vectors: The researcher converts the
unstructured data instances Zi ∈ Z into high-dimensional, sparse, binary vectors
Yi ∈ {0, 1}p using recently developed methods in dictionary learning for mechanistic
interpretability of large language models (LLMs) and other deep neural networks
(DNNs), i.e., Yi := Dict(Zi). Both theory and empirics corroborate that vector entries
Yij correspond to the presence of a monosemantic feature (i.e., a feature with a single,
interpretable meaning) or “concept” j in the given unstructured data instance i. There
are p ≫ n dictionary features, e.g., we assume that n may be on the order of 102

or 103, and p is on the order of 104 or 105 (or larger). The breadth and depth of
concepts spanned by these dictionary features is vast, as can be gleaned from the
literature on dictionary learning for LLMs, and as will be observed concretely in the
empirical applications of this paper. Intuitively, the dictionary should contain all
possible (monosemantic) concepts that the LLM has learned for the purpose of next
token prediction over a massive internet-scale corpus. However, due to sparsity imposed
by design and suggested by machine learning theory, only a handful of these dictionary
features will be present (“activate”) for any given unstructured data point.1

2. Compute test statistics from the dictionary feature vectors: The researcher computes
from this newly created dictionary feature indicator dataset {Yi}ni=1 a vector of p test
statistics, Tn ∈ Rp. These test statistics are intended to test p hypotheses, one for each

1For more discussion of what “monosemanticity” means and its importance for LLM interpretability, see,
e.g., the discussion in Bricken et al. [2023].
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dictionary feature, and may be flexibly chosen by the researcher. Especially important
and simple choices explored in this paper’s empirical examples include hypotheses
testing means and differences-in-means, feature by feature.

3. Perform high-dimensional selective inference using the test statistics: Finally, the
researcher invokes a high-dimensional selective inference procedure newly developed in
this paper to control the k-FWER of the selected set of rejected hypotheses (“discoveries”).
This procedure is asymptotically valid for small k, requires only very mild assumptions
on the data generating process (which are met in the applications of interest), and is
well-powered in the empirical examples considered. This procedure may also be of
independent interest in other high-dimensional selective inference settings.

The output of this framework is therefore a set of interpretable discoveries (rejections of
dictionary feature derived tests) based on some set of unstructured data {Zi}ni=1 with generalized
familywise error rate guarantees, which may be relaxed or tightened as the researcher sees
fit to permit more or fewer discoveries.

Two notable use cases for this framework explored in the empirical applications of this
paper include:

1. Estimating average treatment effects on dictionary features in RCTs, or testing, for
treatment indicator Di and fixed probability of treatment π,

H0,j : E[Yij(1)− Yij(0)] = E[HiYij] = 0, Hi =
Di − π

π(1− π)
.

2. Estimating the probability of the presence of various concepts (measured by monosemantic
dictionary features) in the population from which the unstructured dataset was sampled,
or testing

H0,j : E[Yij] = 0

and then inverting these tests to form a “generalized” confidence set [Romano and
Wolf, 2007].

This particular framework for discovery from unstructured data conveys several scientific
benefits. The first is that of having few researcher degrees of freedom. In many settings
featuring exploratory analysis of unstructured data, there is concern that researchers may
cherry pick aspects of their data to measure or cherry pick choices of measurements in
order to reverse engineer a specific conclusion. By design, however, the framework proposed
by this paper has very little room for motivated data mining, as it requires no “human-
in-the-loop” to direct what quantities are ultimately measured. Off-the-shelf, open-source
dictionary learning models generate p features spanning a huge number of concepts that are
well-cataloged and publicly documented, making it unlikely the researcher needs to define
additional concepts to measure ad hoc, and making a failure to report hypotheses for certain
features conspicuous. Moreover, prior to analysis, a researcher could simply preregister
a choice of dictionary learning model, such as particular sparse autoencoder (SAE) for a
particular LLM, limiting the possibility that a researcher applies this framework with many
different dictionary learning methods to select on favorable results. The proposed framework

3



is also inexpensive both in terms of financial cost and researcher burden; both empirical
examples in this paper were computed on Google Colab notebooks using a single A100
GPU, access to which only costs tens of dollars per month.2 Further, this framework is
easy to implement, requiring no human-in-the-loop to label unstructured data instances, no
additional AI/ML model training, and no additional data sources; the framework is nearly
automatic in execution, and takes only minutes to run using the above-mentioned hardware.
This automaticity also lends the framework to fast and easy replication, another important
scientific benefit.

Thus, the primary contributions of this paper are:

1. The development of a flexible, general-purpose framework for making interpretable as
well as statistically and scientifically principled discoveries from unstructured data,
leveraging state-of-the-art intepretability methods for LLMs and other DNNs.

2. The development of novel high-dimensional multiple hypothesis testing procedures for
controlling k-FWER exceedance, facilitated by extensions of high-dimensional central
limit theory.

The remainder of this paper is structured as follows: Section 2 discusses related literature;
Section 3 describes the framework in detail; Section 4 applies the framework to two recent
papers making use of unstructured data for discovery [Bursztyn et al., 2023, Stantcheva,
2024]; and Section 5 concludes.

2 Related Literature

The framework proposed in this paper is related to recent works from literatures spanning
economics, statistics, and computer science.

Econometric methods for unstructured data. Motivated by the capabilities of modern
AI/ML methods for learning from unstructured economic data (see, e.g., Mullainathan
and Spiess [2017], Gentzkow et al. [2019a], Dell [2025]), new econometric and statistical
frameworks have been developed to facilitate principled statistical inference on low-dimensional
features (predictions) learned from unstructured datasets under supervision, e.g., Angelopoulos
et al. [2023], Ludwig et al. [2024], Carlson and Dell [2025], Rambachan et al. [2024]. This
most recent wave of econometric literature emphasizes nonparametric frameworks compatible
with black-box AI models coupled with debiasing methods, as opposed to model-based
approaches, e.g., Gentzkow et al. [2019b], Battaglia et al. [2024]. Though the framework
presented in this paper is concerned with principled inference on unstructured data without
making parametric assumptions, it differs from this existing econometric literature in that its
goal is primarily unsupervised discovery, as opposed to supervised detection, using AI/ML
models.

Both the proposed framework and the recent econometric framework of Modarressi et al.
[2025] support making causal inferences on text, with an emphasis on discovery. Modarressi
et al. [2025] uses LLM reasoning as a tool for dimensionality reduction on the space of

2This pricing description is valid as of October 2025.
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concepts present in text (i.e., as a low-dimensional hypothesis generation methodology) and
incorporates human validation of LLM-selected hypotheses, with estimation implemented via
sample splitting; in contrast, the framework proposed in this paper leverages recent advances
in interpretability methods for LLMs in order to directly analyze the high-dimensional space
of concepts present in text, and uses state-of-the-art autointerpretation methods to describe
discovered concepts without further researcher intervention, and without requiring data
splitting. As such, these frameworks offer different profiles of scientific benefits and researcher
costs for the problem of causal inference on text.

Modarressi et al. [2025] also directly leverages the work of Ludwig et al. [2017] in their
pipeline, which is similarly relevant to the proposed framework, in that both emphasize
discovery from high-dimensional data, and can likewise both be applied to the problem of
causal inference on unstructured data (as it is used in Modarressi et al. [2025]). However,
the proposed framework tackles the high-dimensional discovery problem using a novel high-
dimensional selective inference procedure that maintains a high degree of interpretability,
whereas Ludwig et al. [2017] modifies the target of discovery to improve power, trading off
interpretability to do so.

High-dimensional selective inference. There is an extensive literature on multiple
hypothesis testing (or “selective inference” more broadly) in statistics, biostatistics, and
economics (see, e.g., Romano et al. [2010] for a review in econometrics). The methods
in this literature span asymptotic and finite sample valid frameworks, and low- and high-
dimensional settings. In particular, for the problem considered in this paper, the literature on
asymptotically valid, high-dimensional selective inference is most relevant, as such methods
permit making very few assumptions about the data (c.f., assuming independence or PRDS
of the p-values in the case of Benjamini and Hochberg [1995]) and readily incorporate
resampling methods that improve power (relative to protecting against worst-case dependence,
c.f., Bonferroni corrections or the method of Benjamini and Yekutieli [2001]). Specifically,
the statistical procedure for high-dimensional exceedance control proposed in this paper most
directly complements existing methods for high-dimensional control of the FWER [Belloni
et al., 2018] and the FDR under weak dependence [Liu and Shao, 2014, Belloni et al., 2018].
This new procedure is facilitated by recent work on high-dimensional central limit theory
for order statistics [Ding et al., 2025]. In fact, the proposed statistical procedures are the
first that haven been stated of their kind to enable (asymptotic) high-dimensional control
of k-FWER exceedance in a way that adapts to arbitrary dependence between p-values or
test statistics, and without requiring any joint invariance assumptions (c.f., Hemerik et al.
[2019]).

Hypothesis generation. There is a growing literature in economics and computer science
on “hypothesis generation” at the pre-scientific stage of empirical inquiry [Ludwig and
Mullainathan, 2024]. From the perspective of this literature, the proposed framework may be
viewed as leveraging dictionary learning as a high-dimensional hypothesis generator, on top
of which discovery is performed at the “scientific” stage of inquiry using high-dimensional
multiple hypothesis testing procedures. As such, the framework in this paper contributes
to the literature on hypothesis generation by providing a statistically principled pathway
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from generation to evaluation—one which involves little to no researcher discretion about
what generated hypotheses should be tested. The recent framework of Movva et al. [2025]
uses dictionary learned features (specifically, sparse autoencoder features) explicitly for the
purposes of hypothesis generation, further motivating the use of dictionary learning methods
as tools for hypothesis generation in the social sciences, both in the present framework and
beyond.

Interpretability for LLMs and other DNNs. There is a large literature in computer
science on machine learning interpretability (see, e.g., Doshi-Velez and Kim [2017] for a
foundational agenda). The machine learning interpretability methods leveraged by this
framework originate from a nascent though highly active literature known as “mechanistic
interpretability,” which seeks to develop methods for interpreting LLM behavior via quantitative
analyses of model internals (e.g., activations, weights). In particular, the dictionary learning
methods for DNN interpretability implemented in this framework were developed in Bricken
et al. [2023], Templeton et al. [2024], i.e., sparse autoencoders (SAEs). SAEs are autoencoders
attached to the residual streams (or other model internals) of a LLM, with hidden layers
being many orders larger in dimension than the residual stream, and which are trained
with sparsity-inducing penalization on reconstruction loss. Under the “linear representation
hypothesis” and “superposition hypothesis” (see, e.g., Bricken et al. [2023] for more discussion),
these sparse autoencoders are thought to act as an overcomplete basis of the space of concepts
in text leveraged by a LLM to make next token predictions, encouraging learned features to
be monosemantic. There has been much debate about the success of SAEs (e.g., Leask et al.
[2025]), though most criticisms still support the notion that SAEs and other dictionary
learning methods have a comparative advantage in discovering as opposed to detecting
concepts of interest in text [Peng et al., 2025]. Other dictionary learning methods that have
been proposed as competitors to SAEs (e.g., transcoders [Paulo et al., 2025]) are similarly
compatible with the framework proposed in this paper.

SAEs and other dictionary learning methods generate features, but not natural language
feature descriptions. Based on the popularity of these methods, a related literature on
“autointerpretability” methods has become active, which seeks to coherently use LLMs to
describe the features discovered by dictionary learning methods at scale. Recent important
papers in this literature include: Bills et al. [2023], Shaham et al. [2024], Paulo et al. [2024],
Rajamanoharan et al. [2024]. The framework proposed in this paper primarily uses insights
from Paulo et al. [2024] to create “local interpretations” that are most relevant to the
data generating process being considered, and otherwise leverages autointerpetations from
Lieberum et al. [2024].

Though the empirical examples considered in this paper handle one of the most popular
unstructured date types—text—for which dictionary learning-based interpretability methods
are the most well-developed, dictionary learning techniques have been successfully applied
to many other modalities, including audio and images [Abdulaal et al., 2024, Bhalla et al.,
2024, Fry, 2024, Daujotas, 2024, Pluth et al., 2025].
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3 Framework

3.1 Setup

Let [n] := {1, . . . , n}, and let x 7→ log x be the natural logarithm. The researcher has access
to a dataset of size n, {(Wi, Zi)}ni=1, which is sampled i.i.d. from some (super-)population
of interest P . The Zi ∈ Z are unstructured data instances and the Wi ∈ W are any other
observed covariates of interest (e.g., for one empirical example considered in the following
section, Wi = Di ∈ W = {0, 1}, a binary treatment status indicator). The space Z is
typically high-dimensional and semantically poor, e.g., if each Zi was a 244 × 244 pixel
image, Z might then be the space of all 3×244×244 arrays of RGB values, or if Zi was text
that was truncated up to some maximum length, Z might be the space of all binary matrices
of a certain dimensionality, which are concatenated one-hot encodings for each word, term,
or token in the text with respect to a specific pre-defined vocabulary.

The researcher has access to the function Dict : Z → {0, 1}p, which maps an unstructured
data observation to a a sparse binary vector. This function is computed by passing an
unstructured data point to a DNN equipped with a dictionary learning model (e.g., a LLM
equipped with pretrained SAE when Zi are texts), recording the feature activations from the
dictionary model, and then aggregating and binarizing these dictionary feature activations
to form a single indicator for each feature in the dictionary j ∈ [p]. There is a large possible
space of Dict functions the researcher could implement, though an especially straightforward
choice for the use case of text data is implementing a Dict function based on the SAE
activations at a single layer of the DNN, for which the j-th entry of the output is equal to 1
if the j-th dictionary feature activated on any token of the input text, and 0 otherwise:

Dict(z)j := Dict(z)lj :=

{
1 if SAE feature j at layer l activates on any token of z,

0 otherwise.

We denote Yi := Dict(Zi) ∈ {0, 1}p as the output of the dictionary transformation
of the unstructured data. As such, each Yij ∈ {0, 1} has the natural interpretation that
a particular dictionary feature j activated for the unstructured data instance i, and, e.g.,
Ȳ•,j := n−1

∑n
i=1 Yij corresponds to an estimate of the probability of the presence of a feature

j in the population P of interest.3

The crux of the proposed framework is that inference on functionals of Yij is desirable
because:

1. Each Yij is monosemantic, and therefore functionals of Yij for a given j are interpretable,
e.g., EP [Yij] is the probability of monosemantic feature j appearing in an unstructured
data observation in population P .

3Dictionary feature activations are typically positively valued scalars, where magnitude is thought to
correspond to some notion of intensity of activation; other works in mechanistic interpretability consider
using these raw activation values directly, perhaps with max or average pooling across tokens. However,
presently, magnitude of activation is not a well-understood or highly interpretable quantitative property of
dictionary learning methods, and as such the default Dict function advocated for in the proposed framework
does not incorporate this information. That said, researchers interested in extending this framework may
find value in alternative Dict functions that leverage activation intensity.
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2. Collectively, the p features in Yij for any given i are exhaustive of some vast space of
concepts of interest to the researcher; intuitively, they are the set of all monosemantic
features that a LLM needed to learn to perform well on next token prediction for a
massive, internet-scale corpus of text (or other similarly massive unstructured data
source). This means the researcher need not pre-specify any particular concepts of
interest, reducing researcher degrees of freedom without limiting discovery.

However, inference on functionals of Yij for each j is also challenging, because:

1. The p is large, so inference on all j ∈ [p] functionals is inherently a multiple hypothesis
testing problem.

2. Not only is p large, but for most social science applications of interest p ≫ n, so
inference on Yij for each j is a high-dimensional multiple hypothesis testing problem.

3. Each estimator, test statistic, or p-value formed from the Yij for each j ∈ [p] for the
purposes of inference is plausibly statistically dependent on every other in a complicated
way, ruling out multiple hypothesis testing approaches that assume independence or
specific forms of dependence (e.g., PRDS).

4. Each Yi is sparse, and the intent of the analysis is discovery, so the desired form of
selective (familywise) error control cannot be too conservative.

What is needed, then, for principled inference on functionals of Yij is a high-dimensional
selective inference procedure with control over a generalized error rate. To be as well-
powered as possible, we want to focus on testing procedures that employ resampling methods
for estimating the true covariance across test statistics, such that conservative protection
against worst-case dependence is not required. To keep things as general as possible, we
also want to allow for only asymptotically valid test statistics and p-values, as is common to
much of econometric analysis. In the following sections, theory and corresponding statistical
procedures are developed to achieve exactly these aims, and are stated as generally as possible
to accommodate settings of interest even beyond analysis of unstructured data.

To pursue inference, consider defining p ≫ n “one-sided” hypotheses {H0,j}j∈[p], where

H0,j : θj(P ) := EP [Xij] ≤ 0, Xij = h(Wi, Yij),

for some measurable function h.4 Two choices of h considered in the empirical examples in
this paper include h(Wi, Yij) = Yij (testing probabilities of dictionary feature activation) and
h(Wi, Yij) =

Di−π
π(1−π)Yij (testing differences in probabilities of activation across groups under

known, fixed group assignment), though many others are possible, lending to the flexibility
of the framework. As shorthand, we will denote X := {Xi}ni=1. Consider also defining a set
of “two-sided” hypotheses of interest {H̃0,j}j∈[p] as

H̃0,j : θj(P ) := EP [Xij] = 0.

4Unless otherwise specified, we assume that all θj(P ) may be treated as fixed, i.e., are not growing or
shrinking in n, p in the asymptotic thought experiment. This is a sufficient condition, however; θj(P ) are still

allowed to approach zero so long as they do so at a rate slower than Bn

√
log p/n (see the proof of Theorem

1 for more insight).
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We may form test statistics for such hypotheses as

Tn,j :=
1√
n

n∑
i=1

Xij, Tn :=
1√
n

n∑
i=1

Xi.

For the purposes of developing high-dimensional central limit theory later on, further define

Sn,j :=
1√
n

n∑
i=1

(Xij − E[Xij]), Sn :=
1√
n

n∑
i=1

(Xi − E[Xi]).

We will denote Σ := E [SnS
T
n] = n−1

∑n
i=1E[(Xi − E[Xi])(Xi − E[Xi])

T], which simplifies
to Σ = E[(Xi − E[Xi])(Xi − E[Xi])

T] under i.i.d. data. Further, for any subset of indices
K ⊆ [p], we will denote Sn,K := (Sn,j : j ∈ K)T.

3.2 High-Dimensional k-FWER Exceedance Control

We construct methods that provide high-dimensional k-FWER exceedance control asymptotically,
or control of the probability of making k or more rejections of true nulls in the large sample
limit when p is growing (much) faster than n in the relevant asymptotic thought experiment.
Naturally, k-FWER control for k = 1 is control of the FWER, and larger choices of k permit
more discoveries.

To proceed, we will adapt strategies from Romano and Wolf [2007] for achieving large
sample k-FWER control to the high-dimensional setting. The testing procedures of Romano
andWolf [2007] rely on the asymptotic validity of bootstrap approximations of the distribution
of the k-th largest coordinate (or “k-max”) of Sn. Thus, a bootstrap procedure for the k-
max statistic that is asymptotically valid in high-dimensions would allow one to run the
algorithms of Romano and Wolf [2007] in the high-dimensional setting with their stated
control under minimal modifications.

High-dimensional bootstraps must be supported by appropriate high-dimensional central
limit theory. Fortunately, the recent work of Ding et al. [2025] provides high-dimensional
central limit theory for the k-th largest coordinate of a scaled sum of centered independent
random vectors so long as k is very small, i.e., k is fixed in the asymptotic thought experiment.
We will build on these “small k” results. Assume n ≥ 3 and p ≥ 3. Let b1 > 0 and b2 > 0
be some constants such that b1 ≤ b2, and let Bn > 1 be a sequence of constants, where it is
possible that Bn diverges. Then we make the following assumptions.

Assumption M. For all i ∈ [n], j ∈ [p], assume: (i) E [exp (|Xij| /Bn)] ≤ 2; (ii) b21 ≤
1
n

∑n
i=1 E[X2

ij]; and (iii) 1
n

∑n
i=1E[X4

ij] ≤ B2
nb

2
2.

These are mild conditions on the tails and moments of the data Xij, which are stated in a
way that accommodates data that are independent but not identically distributed (i.n.i.d.).
Part (i) of Assumption M simply requires that Xij be sub-exponential, or, equivalently, have
an Orlicz norm in Ψ1 bounded by Bn < ∞. The Bn is indexed by n to accommodate growing
tail thickness within the sub-exponential regime as p = pn grows in the asymptotic thought
experiment with i.n.i.d. data. Part (ii) of Assumption M insists that the second moments of
the data be bounded away from zero, appropriately stated for i.n.i.d. data. Part (iii) insists
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on bounded fourth moments in a similar fashion. As such, for i.i.d. data, the case considered
in this paper, we may simply require for some fixed B < ∞ and fixed b1, b2 with b1 ≤ b2:
(i) E [exp (|Xij| /B)] ≤ 2; (ii) b21 ≤ E[X2

ij]; and (iii) E[X4
ij] ≤ B2b22. Note that, in many use

cases of interest for dictionary learned features, the Xij are both bounded and studentized,
aiding the plausibility of these assumptions.

In practice, some fraction of dictionary features may be “dead” for any given dataset,
meaning they are degenerate at zero [Bricken et al., 2023]. Of course, these features are not
of interest for the purposes of discovery. This phenomenon is tolerated by the framework so
long as the count of degenerate features is smaller than any relevant p− k, in which case, in
any finite sample, the k-th largest coordinate of all relevant statistics is invariant to whether
or not the degenerate coordinates are dropped. As such, conceptually, one should think of
j as ranging over the p non-degenerate features. In practice, to perform studentization, it is
recommended that these degenerate coordinates are explicitly filtered out; studentization is
discussed further in Section 3.3.

Assumption R. Assume that B2
n log

5(pn) = o(n).

This is the key rate condition needed for (sup-norm) Gaussian or bootstrap approximation
error to go to zero asymptotically under the high-dimensional CLTs discussed in both Ding
et al. [2025] and Chernozhuokov et al. [2022]. Rewritten, it says that

B2
n log

5(pn)

n
= o(1)

which permits p growing very fast with n in the asymptotic thought experiment. In fact,
p may be growing nearly exponentially in n, e.g., p = en

1/6
for fixed Bn. That this rate

condition permits p ≫ n is an important positive result in high-dimensional central limit
theory [Chernozhukov et al., 2017, 2023].

We will focus on the Gaussian multiplier bootstrap as our high-dimensional bootstrap
method. We define the Gaussian multiplier bootstrap quantity

SBn :=
1√
n

n∑
i=1

ξi
(
Xi − X̄n

)
,

where ξi
iid∼ N(0, 1) and X̄n := n−1

∑n
i=1Xi. We also introduce x 7→ x[k] as notation for the

function that selects the k-th largest coordinate of a vector x, i.e., x[k] = k-max(x) in the
notation of Romano and Wolf [2007]. For the purposes of bootstrapping, we will denote the
data-conditional probability measure PB(·) := P (· | X).

With these assumptions and notations in place, we now introduce statistical procedures
for controlling the k-FWER for small k, based on the step-wise algorithms of Romano and
Wolf [2007].

Theorem 1 (High-dimensional k-FWER exceedance control for small k, one-sided). Consider
the method of Algorithm 2.1 or 2.2 in Romano and Wolf [2007] with test statistics Tn of
hypotheses {H0,j}j∈[p] and critical values ĉn,K(1−α, k) given by the 1−α quantile of SBn,K,[k]
under PB. Assume that k is fixed (i.e., not growing with n, p). Then under Assumptions M
and R:
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(i) lim supn,p→∞ k-FWERP ≤ α.

(ii) If H0,j is false and θj(P ) > 0, then the probability that the step-down method rejects
H0,j tends to 1.

Theorem 2 (High-dimensional k-FWER exceedance control for small k, two-sided). Consider
the method of Algorithm 2.1 or 2.2 in Romano and Wolf [2007] with test statistics |Tn| of
hypotheses {H̃0,j}j∈[p] and critical values ĉn,K(1−α, k) given by the 1−α quantile of |SBn,K |[k]
under PB. Assume that k is fixed (i.e., not growing with n, p). Then under Assumptions M
and R:

(i) lim supn,p→∞ k-FWERP ≤ α.

(ii) If H̃0,j is false and θj(P ) ̸= 0, then the probability that the step-down method rejects
H̃0,j tends to 1.

Importantly, the procedures of Theorems 1 and 2 are only valid for small k. To see this
explicitly, note that the sup-norm bootstrap or Gaussian approximation error in the high-
dimensional CLTs for the k-th largest coordinate introduced in Ding et al. [2025] only goes
to zero if

k8B2
n log

5(pn)

n
= o(1),

meaning that k must be fixed or must grow incredibly slowly: for all practical purposes, k
needs to be quite small. As such, the theory of Ding et al. [2025] is unsuitable for making
progress on FDP exceedance control, which requires a k that may grow linearly with p.
An important goal of future research would be to establish valid high-dimensional FDP
exceedance control using appropriate high-dimensional central limit theory.

3.3 High-Dimensional CLT for k-max of Approximate Means

In practice, hypothesis testing with studentized statistics will be important for powering
discoveries beyond just frequently occurring dictionary features (which are, e.g., high variance
features for Bernoulli random variables whenXij = Yij ∈ {0, 1}). To facilitate studentization,
we will need a high-dimensional CLT that permits statistics with small estimation errors. We
therefore generalize the high-dimensional CLTs of Ding et al. [2025] to handle “approximate
means” in the parlance of Belloni et al. [2018], stated in the following lemmas.

Lemma 1 (High-dimensional CLT for the small k-max coordinate of approximate means).
Let Ŝn := Sn +Rn, and assume that ∥Rn∥∞ = oP (1/

√
log p). Further assume that k is fixed

(i.e., does not grow with n, p). If Assumptions M and R hold, then as n, p → ∞

sup
t∈R

∣∣∣P (Ŝn,[k] ≤ t
)
− P

(
N(0,Σ)[k] ≤ t

)∣∣∣→ 0.
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Lemma 2 (High-dimensional bootstrap for the small k-max coordinate of approximate
means). Let ŜBn := SBn +Rn, and assume that ∥Rn∥∞ = oP (1/

√
log p). Further assume that

k is fixed (i.e., does not grow with n, p). If Assumptions M and R hold, then as n, p → ∞

sup
t∈R

∣∣∣PB
(
ŜBn,[k] ≤ t

)
− P

(
N(0,Σ)[k] ≤ t

)∣∣∣ P−→ 0.

Using these lemmas, we may now state two corollaries, which allow for studentization.

First, define Λ := diag(Σ), as well as Σ0 := Λ−1/2ΣΛ−1/2. Let Σ̂jj := n−1
∑n

i=1

(
Xij − X̄n,j

)2
and let Λ̂ := diag

{
Σ̂11, . . . , Σ̂pp

}
be an estimator of the asymptotic variances Λ.

Corollary 1 (High-dimensional CLT for the small k-max studentized coordinate). If Assumptions
M and R hold, and Bn = O(1) and k is fixed (i.e., does not grow with n, p), then, by
application of Lemma 1, as n, p → ∞

sup
t∈R

∣∣∣∣P ((Λ̂−1/2Sn

)
[k]

≤ t

)
− P

(
N(0,Σ0)[k] ≤ t

)∣∣∣∣→ 0.

Corollary 2 (High-dimensional bootstrap for the small k-max studentized coordinate). If
Assumptions M and R hold, and Bn = O(1) and k is fixed (i.e., does not grow with n, p),
then, by application of Lemma 2, as n, p → ∞

sup
t∈R

∣∣∣∣PB

((
Λ̂−1/2SBn

)
[k]

≤ t

)
− P

(
N(0,Σ0)[k] ≤ t

)∣∣∣∣ P−→ 0.

With these corollaries, it is immediate that the bootstrap quantiles of studentized statistics
well approximate the studentized version of Sn. Also note that, in the setting where the data
is not just i.n.i.d. but i.i.d., as is true for the use case of interest based on dictionary features
Xi, Bn = O(1) is assured.

4 Empirical Applications

As an illustration of the framework proposed in this paper, we now reanalyze two recent
works in empirical economics that pursue discovery from unstructured data, and show how
new, principled, and interpretable discoveries may be made using the same exact data at low
cost.

4.1 Bursztyn et al. [2023]

Bursztyn et al. [2023] study how the provision of “social cover” affects willingness to publicly
dissent to socially stigmatized causes, and the perception of this dissent. As a key application
of their theory, Bursztyn et al. [2023] run an information treatment experiment (Experiment
2) in which participants are told they have been matched with another (fictional) respondent
that chose to join a campaign to defund the police (a plausible expression of dissent in liberal
American politics at the time the experiment was conducted), and then show the participant
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a tweet that the matched respondent is said to have agreed to publicly post. This tweet has
been randomized to either include social cover or no social cover, namely whether or not the
tweet indicated that the matched respondent joined the campaign after reading an evidence-
based article in support of it (the no social cover condition) or before (the social cover
condition).5

An important outcome collected by this experiment is the participant’s open-ended text
response to the question “Why do you think your matched respondent chose to join the
campaign to oppose defunding the police?” This open-ended text response is meant to
capture the causal effect of social cover on the perception of dissent. As such, this is a
setting where discovery is of interest; ideally, to form a holistic understanding of how social
cover affects perception of dissent, we do not want to pre-specify what aspects of perception
we are interested in, and want to discover any interpretable systematic differences that exist
in the text responses across treatment and control groups. In order to make progress on this
analysis of unstructured data, Bursztyn et al. [2023] compute a Pearson’s χ2 statistic for all
phrases of up to three words per Gentzkow and Shapiro [2010], which they use as an index
to rank the phrases that are most differentially expressed in each condition’s open-ended
responses.6 The interpretability of the results from this analysis, is, naturally, hindered by
the coarseness of the featurization of the text as three word phrases, as well as the fact that
there are no obvious estimands or inferential guarantees. The only qualitative conclusion
gleaned by Bursztyn et al. [2023] from this quantitative exercise is: “we find that respondents
in the Cover condition are more likely to use phrases related to the article or the associated
evidence—for example, ‘article,’ ‘read,’ ‘convincing,’ or ‘increase in crime.’ ”7

Can we make more (and more interpretable) discoveries with the framework of this paper?
To investigate, we implement a Dict function based on the Gemma Scope autoencoders
for Google’s Gemma 2 2B [Lieberum et al., 2024], and specifically the SAE trained on
the residual stream of layer 12.8 We pull the Gemma Scope project’s autointerpretation
descriptions of these features from Neuronpedia,9 though we also implement a custom,
“local” autointerpretation pipeline based on the best practices of Paulo et al. [2024], discussed
further in Appendix Section 6.2. These are mainstream choices for a SAE and LLM pairing
in machine learning interpretability research.

This Dict function yields a dataset {Xij}i∈[n],j∈[p], where n = 1033 and p = 12,005
(non-degenerate features). The hypotheses of interest are, for all j ∈ [p],

H0,j : E[Yij(1)− Yij(0)] = E[HiYij] := E[Xij] = 0, Hi =
Di − π

π(1− π)
.

for π = 0.5, and where {Di = 1} indicates the social cover condition. As a baseline, we will

5See Online Appendix Figure B.3 of Bursztyn et al. [2023] for a schematic of the experimental design.
6Specifically, it is a Pearson’s χ2 statistic for a null hypothesis that the propensity to use a given phrase

is equal across conditions, per Gentzkow and Shapiro [2010]. We interpret these statistics as simply forming
an index, however, because the results of these hypothesis tests are not reported, and no multiple hypothesis
testing corrections are implemented.

7The Online Appendix Table B.11 of Bursztyn et al. [2023] contains the top ten characteristic phrases in
each condition based on the χ2 index.

8It is recommended to work with SAEs trained on the middle layer of a LLM to capture coarser concepts
and features, which is plausibly more suitable for analyzing broad themes in text.

9See https://www.neuronpedia.org/gemma-scope for more.
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implement a simple one-step version of the statistical procedure in Theorem 2, which will
attain a lower bound on the power achieved by the step-wise procedure.

We may first consider whether or not, as anticipated, simply controlling the FWER
would be too conservative for the purposes of discovery in this setting. To explore this, we
set k = 1 and α = 0.05 in the procedure based on Theorem 2 (equivalently, we implement
the high-dimensional FWER controlling procedure of Belloni et al. [2018]), and we obtain
only two significant discoveries: a 13.2 percentage point causal effect on the presence of
dictionary feature 3518 (DF-3518) and a 13.4 percentage point causal effect on the presence
of dictionary feature 3426 (DF-3426). The Gemma Scope autointerprations of these features
paint a picture that corroborates the original findings of Bursztyn et al. [2023]: DF-3426
is described as activating on “references to articles” and DF-3426 on “references to news
articles and reports.” However, we only discover two features out of over 12,000, and not
much new insight relative to the original analysis—even if the interpretation of the features
discovered was transparent and automatic, by construction.

In Table 1, we make discoveries based on the procedure of Theorem 2 now setting k = 5,
still with α = 0.05, and this time using local autointerpretation descriptions per the method
Appendix Section 6.2.

Table 1: Discoveries for Experiment 2 of Bursztyn et al. (2023), 5-FWER Control at α = 5%

Feature ÂTE Description (“Feature activates highly on...”) t-stat

306 0.099 source that claims police defunding increases crime 4.103
1392 0.118 partial or incomplete reading of an article 3.910
1622 0.072 mentions of a prestigious author or institution (e.g., “Princeton professor”) 4.045
1992 0.095 mentions of an article 4.286
3298 0.126 article about defunding the police and its impact on violent crime 4.223
3426 0.134 mentions of an “article” or article reference 4.803
3518 0.132 articles linking police defunding to increased violent crime 5.020
4320 0.081 article or report content 3.999
8486 0.085 defunding-the-police political discourse 3.918
8902 0.079 reading an article that influences a person’s beliefs or viewpoints 4.198
12287 -0.130 modal verbs expressing uncertainty or possibility 3.890

Note: Descriptions generated using the method described in Appendix Section 6.2, using GPT-OSS 20B
[OpenAI, 2025]. For bootstrapping, 10,000 iterations are performed.

As can be seen, even with control of k-FWER at k = 5, we obtain 11 rejections of the
null, or 11 discoveries. By guarantee of Theorem 2, the probability that 5 or more of these
11 discoveries is false is less than 5%. The previous features discovered with the FWER
controlling procedure appear, as well as others that represent concepts both absent from
the FWER controlled analysis and the original analysis in Bursztyn et al. [2023]. Though
there are features that appear to activate on redundant concepts, in totality these discoveries
contribute to entirely new characterizations of the causal effect of social cover on dissent. For
example, DF-1622 responds to “mentions of a prestigious author or institution” and increases
by 7 percentage points in the treatment group, indicating that, as Bursztyn et al. [2023]
posit, the social cover mechanism plausibly relies on the perceived credibility of the article
cited. DF-1392 increases by 12 percentage points in the treatment group, and responds
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to discussion of “partial or incomplete reading of an article,” suggesting that that social
cover in this experiment may have a negatively valenced effect related to perceptions of
ignorance. DF-12287 responds to “modal verbs expressing uncertainty or possibility,” and
its probability of activation is decreased by 13 percentage points in the treatment group.
This supports the idea that the causal effect of not having social cover is, to first order,
generating uncertainty and speculation about dissent, as opposed to an alternative where
participants coalesce around a single narrative in the absence of cover. This insight is also
congruous with the observation that few large negatively signed causal effects are discovered.

Importantly, all of this analysis was performed automatically, in a handful of minutes
on a single A100 GPU in Google Colab. Though this analysis was not preregistered, it is
possible to cheaply and automatically replicate these results, and assess their sensitivity to
different autointerpretation strategies, dictionary learning methods, and LLMs. Notably,
the space of possible concepts was not pruned in any way prior to this analysis, nor were
they weighted in some way towards topics related to articles; the analysis was automatic and
without human intervention, with no room for motivated data mining.

4.2 Stantcheva [2024]

Stantcheva [2024] conducts surveys on representative samples of the United States population
investigating attitudes towards inflation. These surveys include open-ended text responses to
a variety of questions, with the goal of discovering attitudes and opinions that the researcher
should not (for concern about priming respondents) or could not (for lack of imagination)
pre-specify.10

An important open-ended prompt that Stantcheva [2024] solicit an answer to is “High
inflation is caused by...” In the original analysis, Stantcheva [2024] code open-ended responses
with a keyword-based method described in Ferrario and Stantcheva [2022], in which the
researcher creates a list of topics and associated keywords in a discretionary way, ranging
from “manual to semi-supervised or unsupervised” means. The result of applying this
analysis to the open-ended responses to the above prompt yields Figure 3 in Stantcheva
[2024], which finds, among other things, that mentions of “Biden and the administration,”
“Greed,” “Monetary policy,” “Fiscal policy,” “War and foreign policy,” “Demand vs supply,”
and “Supply-side mechanisms (other than input prices)” appear in more than 5% of all
responses.

Do we make the same discoveries automatically if we apply the proposed framework
instead? Do we make more and new interpretable discoveries? To find out, we use the
same models as in Section 4.1, but reduce the space of features by half, filtering out all
features that, in the corpus on which the Gemma Scope SAEs were trained, had greater
than median empirical token activation frequency. This choice of dimensionality reduction
is meant to screen out features that activate in many texts across domains, e.g., features
related to grammatical aspects of text, which was handled implicitly in the previous causal
analysis by virtue of differencing. (Ideally, such a dimensionality reduction choice would
be preregistered, to prevent cherry-picking by filtering.) This yields a dataset {Xij} with

10See, e.g., Haaland et al. [2024] for more discussion of the benefits of open-ended survey questions for
understanding economic behavior.
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n = 503 and p = 3915 non-degenerate features—still a very high-dimensional inference
problem.

We test the p = 3915 hypothesesH0,j : E[Xij] = E[Yij] = 0, i.e., we test the probability of
a given feature activating in the population of open-ended responses to the above prompt in
the United States. Specifically, by again using 5-FWER control with α = 0.05 based on the
procedure of Theorem 2, we make 818 interpretable discoveries. In order to better present
these discoveries, using test inversion we produce simultaneous “generalized” confidence sets
[Romano and Wolf, 2007], which asymptotically guarantee that the probability that k or
more estimands do not lie in the set is less than α.

In Table 2, we report the simultaneous confidence intervals for all discoveries with a lower
confidence bound above 20%. Notably, we discover, automatically, with no manual pruning
or interpretation required, many sensible commonplace themes related to the topic at hand:
DF-9804 responds to economic terms, DF-14304 responds to economic terminology, and DF-
13447 responds to mentions of inflation. However, we also recover many of the topics from
the original analysis in Stantcheva [2024] without any human discretion or intervention: DF-
4192 responds to discussion of monetary policy, DF-5719 responds to political commentary,
and DF-14747 responds to discussion of supply-side issues. Undoubtedly, many other topics
are recovered as we look deeper down the list of discoveries, beyond the top 11 out of 818.
However, even in this top 11, we learn that there is a great deal of pure uncertainty expressed
in these open-ended responses based on the activation of DF-4794; that macroeconomic
indicators get frequently discussed by virtue of DF-11036; and that money supply and
government spending and budgeting are often mentioned, per DF-104 and DF-8316, respectively.

Table 2: Largest Discoveries for “High inflation is caused by...” in Stantcheva (2024)

Feature Description (“Feature activates highly on...”) Sim. CI, Lower Sim. CI, Upper

104 excess money supply 0.208 0.352
4192 monetary policy and central-bank terminology 0.217 0.363
4794 expressions of uncertainty or hedging 0.210 0.355
5719 political commentary about government or the economy 0.843 0.942
8316 government budget or spending 0.279 0.433
9804 economic terms related to the economy 0.268 0.420
11036 macroeconomic indicators 0.212 0.357
13447 inflation or rising prices 0.393 0.553
13574 negative economic conditions 0.230 0.378
14304 economic terminology 0.300 0.456
14747 supply-related terms 0.234 0.382

Note: Generalized confidence intervals based on k-FWER control at k = 5, α = 5%. Descriptions
generated using the method described in Appendix Section 6.2, using GPT-OSS 20B [OpenAI, 2025]. For
bootstrapping, 10,000 iterations are performed.

Once again, this procedure was cheap and fast to implement, and could be replicated
and analyzed for sensitivity by any other researcher, quickly. Beyond filtering out greater
than median activating dictionary features, no other choices were made to delimit the space
of possible discoveries, or focus them in some way on the space of economic- or inflation-
relevant concepts; the exact same models that yielded the results of Section 4.1 yielded the
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results in this section.

5 Conclusion

Existing literature in empirical economics and econometrics has long suggested the importance
of open-ended discovery from high-dimensional or unstructured data. The framework proposed
in this paper shows how new statistical procedures for high-dimensional multiple hypothesis
testing, when combined with the latest innovations in interpretability methods for machine
learning models, can facilitate open-ended, interpretable discovery at scale with higher
practicality and higher fidelity than previously possible.

Importantly, the automaticity of the proposed framework makes it subject to very few
researcher degrees of freedom, making it resilient to cherry-picking and motivated data-
mining without compromising the purpose of discovery in the first place. This is especially
true if one couples this framework with minimal preregistration efforts, e.g., simply publicly
declaring what dictionary learning model, LLM, and automatic interpretation method are
to be used for the analysis of a text, and if any of the features are to be filtered on principled
grounds.

A reasonable possible criticism of the proposed framework is that the interpretations
associated with dictionary learning methods are not credible. On this topic exactly, there
has been an immense amount of attention from AI/ML research communities, which has, to
date, primarily concluded that such dictionary features are useful and reliable for discovery,
even if they do not uncover “atomic” or fundamental conceptual units in deep neural networks
like LLMs [Leask et al., 2025, Peng et al., 2025]. The best practices and methods for moving
from features to feature descriptions is an open and important question in the literature,
and choices made on this front certainly affect interpretations of discoveries made by the
proposed framework. However, as the empirical examples of the previous section make
clear, straightforward automatic interpretation methods—which are completely data-driven,
replicable, and not subject to motivated human reasoning—yield sensible outputs, scale well
with the size of selected sets, can be further scrutinized by humans to assess their validity,
and can be perturbed or modified cheaply to assess sensitivity to autointerpretation prompts.
Future research related to this framework would seek to apply quantitative methods for
validating feature descriptions at scale as well [Paulo et al., 2024, Movva et al., 2025].

The proposed framework is most naturally viewed as one tool of many in the empirical
researcher’s toolkit for making discoveries from unstructured data. Using this framework
alongside others that researchers may already be implementing is entirely complementary,
and would only serve to deepen insights into possible interpretations of inference on unstructured
data.
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Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically Interpreting
Millions of Features in Large Language Models, 2024. URL https://arxiv.org/abs/

2410.13928. Version Number: 3.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant
Varma, János Kramár, and Neel Nanda. Jumping Ahead: Improving Reconstruction
Fidelity with JumpReLU Sparse Autoencoders, 2024. URL https://arxiv.org/abs/

2407.14435. Version Number: 3.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,
Vikrant Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma
Scope: Open Sparse Autoencoders Everywhere All At Once on Gemma 2, 2024. URL
https://arxiv.org/abs/2408.05147. Version Number: 2.

21

https://arxiv.org/abs/1702.08608
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
http://arxiv.org/abs/2502.04878
https://arxiv.org/abs/2506.23845
https://arxiv.org/abs/2501.18823
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://arxiv.org/abs/2404.14394
https://arxiv.org/abs/2410.13928
https://arxiv.org/abs/2410.13928
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2408.05147


Ahmed Abdulaal, Hugo Fry, Nina Montaña-Brown, Ayodeji Ijishakin, Jack Gao, Stephanie
Hyland, Daniel C. Alexander, and Daniel C. Castro. An X-Ray Is Worth 15 Features:
Sparse Autoencoders for Interpretable Radiology Report Generation, 2024. URL https:

//arxiv.org/abs/2410.03334. Version Number: 1.

Usha Bhalla, Alex Oesterling, Suraj Srinivas, Flavio P. Calmon, and Himabindu Lakkaraju.
Interpreting CLIP with Sparse Linear Concept Embeddings (SpLiCE), 2024. URL https:

//arxiv.org/abs/2402.10376. Version Number: 2.

Hugo Fry. Towards multimodal interpretability: Learning
sparse interpretable features in vision transformers, Apr 2024.
URL https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/

case-study-interpreting-manipulating-and-controlling-clip. Accessed: 2024-
05-16.

Gytis Daujotas. Case study: Interpreting, manipulating,
and controlling clip with sparse autoencoders, Aug 2024.
URL https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/

case-study-interpreting-manipulating-and-controlling-clip. Accessed: 2025-
10-03.

Daniel Pluth, Yu Zhou, and Vijay K. Gurbani. Sparse Autoencoder Insights on Voice
Embeddings, 2025. URL https://arxiv.org/abs/2502.00127. Version Number: 1.

Victor Chernozhuokov, Denis Chetverikov, Kengo Kato, and Yuta Koike. Improved central
limit theorem and bootstrap approximations in high dimensions. The Annals of Statistics,
50(5), October 2022. ISSN 0090-5364. doi: 10.1214/22-AOS2193. URL https:

//projecteuclid.org/journals/annals-of-statistics/volume-50/issue-5/

Improved-central-limit-theorem-and-bootstrap-approximations-in-high-dimensions/

10.1214/22-AOS2193.full.

Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Central limit
theorems and bootstrap in high dimensions. The Annals of Probability,
45(4), July 2017. ISSN 0091-1798. doi: 10.1214/16-AOP1113. URL
https://projecteuclid.org/journals/annals-of-probability/volume-45/

issue-4/Central-limit-theorems-and-bootstrap-in-high-dimensions/10.1214/

16-AOP1113.full.

Victor Chernozhukov, Denis Chetverikov, Kengo Kato, and Yuta Koike. High-
Dimensional Data Bootstrap. Annual Review of Statistics and Its Application,
10(1):427–449, March 2023. ISSN 2326-8298, 2326-831X. doi: 10.1146/
annurev-statistics-040120-022239. URL https://www.annualreviews.org/doi/10.

1146/annurev-statistics-040120-022239.

Matthew Gentzkow and Jesse M. Shapiro. What Drives Media Slant? Evidence From
U.S. Daily Newspapers. Econometrica, 78(1):35–71, January 2010. ISSN 0012-9682. doi:
10.3982/ECTA7195. URL https://doi.org/10.3982/ECTA7195. Publisher: John Wiley
& Sons, Ltd.

22

https://arxiv.org/abs/2410.03334
https://arxiv.org/abs/2410.03334
https://arxiv.org/abs/2402.10376
https://arxiv.org/abs/2402.10376
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://arxiv.org/abs/2502.00127
https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-5/Improved-central-limit-theorem-and-bootstrap-approximations-in-high-dimensions/10.1214/22-AOS2193.full
https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-5/Improved-central-limit-theorem-and-bootstrap-approximations-in-high-dimensions/10.1214/22-AOS2193.full
https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-5/Improved-central-limit-theorem-and-bootstrap-approximations-in-high-dimensions/10.1214/22-AOS2193.full
https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-5/Improved-central-limit-theorem-and-bootstrap-approximations-in-high-dimensions/10.1214/22-AOS2193.full
https://projecteuclid.org/journals/annals-of-probability/volume-45/issue-4/Central-limit-theorems-and-bootstrap-in-high-dimensions/10.1214/16-AOP1113.full
https://projecteuclid.org/journals/annals-of-probability/volume-45/issue-4/Central-limit-theorems-and-bootstrap-in-high-dimensions/10.1214/16-AOP1113.full
https://projecteuclid.org/journals/annals-of-probability/volume-45/issue-4/Central-limit-theorems-and-bootstrap-in-high-dimensions/10.1214/16-AOP1113.full
https://www.annualreviews.org/doi/10.1146/annurev-statistics-040120-022239
https://www.annualreviews.org/doi/10.1146/annurev-statistics-040120-022239
https://doi.org/10.3982/ECTA7195


OpenAI. gpt-oss-120b gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/2508.

10925.

Beatrice Ferrario and Stefanie Stantcheva. Eliciting People’s First-Order Concerns: Text
Analysis of Open-Ended Survey Questions. AEA Papers and Proceedings, 112:163–169,
May 2022. ISSN 2574-0768, 2574-0776. doi: 10.1257/pandp.20221071. URL https:

//pubs.aeaweb.org/doi/10.1257/pandp.20221071.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge University Press, 1 edition, September 2018. ISBN 978-1-108-23159-
6 978-1-108-41519-4. doi: 10.1017/9781108231596. URL https://www.cambridge.org/

core/product/identifier/9781108231596/type/book.

Arun Kumar Kuchibhotla and Abhishek Chakrabortty. Moving beyond sub-Gaussianity
in high-dimensional statistics: applications in covariance estimation and linear regression.
Information and Inference: A Journal of the IMA, 11(4):1389–1456, December 2022. ISSN
2049-8772. doi: 10.1093/imaiai/iaac012. URL https://academic.oup.com/imaiai/

article/11/4/1389/6612958.

23

https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://pubs.aeaweb.org/doi/10.1257/pandp.20221071
https://pubs.aeaweb.org/doi/10.1257/pandp.20221071
https://www.cambridge.org/core/product/identifier/9781108231596/type/book
https://www.cambridge.org/core/product/identifier/9781108231596/type/book
https://academic.oup.com/imaiai/article/11/4/1389/6612958
https://academic.oup.com/imaiai/article/11/4/1389/6612958


6 Appendix

6.1 Replication

The results from the empirical applications section of this paper can be replicated using the
open source replication data from Bursztyn et al. [2023] and Stantcheva [2024] in addition
to the Jupyter notebook hyperlinked here.

This Jupyter notebook can readily be modified to make discoveries on new unstructured
datasets of interest to researchers.

6.2 Local Autointerpretation

Building “autointerpretation” pipelines for scalable description of features produced from
dictionary learning methods is an active area of AI/ML research. Most best practices rely
on leveraging LLMs themselves to interpret the features, per the pioneering work of Bills
et al. [2023].

Heuristically, most of these pipelines work by collecting the text samples on which a
given feature activates the most in a particular corpus, and weave information about these
activations—alongside the activating text—into prompts that LLMs are asked to interpret.
Though autointerpretation descriptions are available for all features for the Gemma Scope
models, they are learned based on the distribution of Gemma’s pretraining data, and as
such may be refined through an autointerpretation method “localized” to the unstructured
dataset distribution P .

To accomplish this goal, we adapt the methods of Paulo et al. [2024] to generate autointerpretation
prompts of the form:

{"role": "system", "content": """

You are a meticulous AI researcher conducting an important

investigation into patterns found in language.

"""

},

{"role": "user", "content": f"""

When a corpus of texts was passed through a LLM, a particular neuron

most activated on the following examples, and specifically on the text

delimited << like this >>. Provide a single phrase description of what

the neuron likely responds to (in any corpus, not just this one), and

delimit it as [[your concise description here]]. Do not mention the

marker tokens ($<<$ $>>$) in your interpretation. The examples are:

{texts}

"""

}

where texts is a concatenation of L texts—modified with delimiters as the prompt suggests—
associated with the tokens that activated most highly on a given feature in the researcher’s
unstructured dataset. We use L = 10 in the empirical examples of this paper, and the open-
source reasoning model GPT-OSS 20B [OpenAI, 2025] to perform interpretations. GPT-OSS
20B’s reasoning effort is set to “low” for faster generations.
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Future work would seek to provide quantitative assessments of the quality of these
interpretations, either using the methods of Paulo et al. [2024] or Movva et al. [2025].

6.3 Proofs

Before stating proofs of the results in the main text, we state three additional useful lemmas.

Lemma 3. For a sequence of random variables Un and for a deterministic sequence rn,

Un = oP (rn) ⇐⇒ PB(|Un/rn| ≥ ε) = oP (1) for any ε > 0.

Proof. Note that, by definition, we have that Un = oP (rn) if for any ε > 0 that

lim
n→∞

P (|Un/rn| ≥ ε) = lim
n→∞

E[Zn,ε] = 0

where Zn,ε := P (|Un/rn| ≥ ε | X), as by the law of total expectation P (|Un/rn| ≥ ε) =
E[Zn,ε]. By Markov’s inequality, because Zn,ε is always positive, for any δ > 0,

P (Zn,ε ≥ δ) ≤ E[Zn,ε]

δ
.

Thus we have that

0 ≤ lim
n→∞

P (Zn,ε ≥ δ) ≤ limn→∞E[Zn,ε]

δ
= 0

and limn→∞ P (|Zn,ε| ≥ δ) = 0 for any ε, δ > 0. As such, P (|Un/rn| ≥ ε | X) = PB(|Un/rn| ≥
ε) = oP (1) for any ε > 0 if Un = oP (rn).

For the other direction, note further that if P (|Un/rn| ≥ ε | X) = oP (1) then the
boundedness of Zn,ε permits using the bounded convergence theorem11 to show for any
ε > 0

P (|Un/rn| ≥ ε) = o(1).

Lemma 4. For {Xi}i∈[n] independent sub-exponential random vectors of dimension p, with
each ∥Xij∥ψ1 ≤ Bn for i ∈ [n] and j ∈ [p], then, under Assumption R,

∥Sn∥∞ =

∥∥∥∥∥ 1√
n

n∑
i=1

(Xi − E[Xi])

∥∥∥∥∥
∞

= OP

(
Bn

√
log p

)
.

Proof. We start by noting Corollary 2.9.2 of Vershynin [2018], which implies here that

P

{∣∣∣∣∣ 1n
n∑
i=1

(Xij − E[Xij])

∣∣∣∣∣ ≥ t

}
≤ 2 exp

[
−cmin

(
nt2

B2
n

,
nt

Bn

)]
.

Thus by the union bound,

P

{
max
j∈[p]

∣∣∣∣∣ 1n
n∑
i=1

(Xij − E[Xij])

∣∣∣∣∣ ≥ t

}
≤ 2p exp

[
−cmin

(
nt2

B2
n

,
nt

Bn

)]
.

11See, e.g., Lemma 10.7 at this link.
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Defining that

ε := 2p exp

[
−cmin

(
nt2

B2
n

,
nt

Bn

)]
then we have that for c̃ = 1/

√
c

c̃
log(2p/ε)

n
= min

{
t2/B2

n, t/Bn

}
and therefore

t = c̃Bn
log(2p/ε)

n
∨ c̃Bn

√
log(2p/ε)

n
,

meaning that

P

{
max
j∈[p]

∣∣∣∣∣ 1n
n∑
i=1

(Xij − E[Xij])

∣∣∣∣∣ ≥ c̃Bn

(
log(2p/ε)

n
∨
√

log(2p/ε)

n

)}
≤ ε.

As such, we have

P

{
max
j∈[p]

∣∣∣∣∣ 1√
n

n∑
i=1

(Xij − E[Xij])

∣∣∣∣∣ ≥ c̃Bn

(
log(2p/ε)√

n
∨
√
log(2p/ε)

)}
≤ ε.

However, under Assumption R, log(p)/
√
n = o(1), so the Gaussian tail term dominates

for large n, and thus for large n we may set Mε := c̃
√

log(2/ε)
log 3

+ 1 and observe that

P

maxj∈[p]

∣∣∣ 1√
n

∑n
i=1(Xij − E[Xij])

∣∣∣
Bn

√
log p

≥ Mε

 ≤ ε.

We then conclude using the definition of stochastic boundedness that∥∥∥∥∥ 1√
n

n∑
i=1

(Xi − E[Xi])

∥∥∥∥∥
∞

= OP

(
Bn

√
log p

)
as claimed.

Lemma 5. For sequences of random variables Un and Vn, if, uniformly in t, for δn =
o(1), νn = o(1),

P (|P (Un > t | X)− P (Vn > t)| ≥ δn) ≤ νn

then, uniformly in t,
|P (Un > t | X)− P (Vn > t)| = oP (1).

Proof. Define dn(X) := |P (Un > t | X) − P (Vn > t)|. We want to show that, for any fixed
δ > 0,

lim
n→∞

P (dn(X) ≥ δ) = 0
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(the definition of convergence in probability). Note that, given the definition δn = o(1), for
some n∗, for all n ≥ n∗ we have that δn < δ. Thus, define the events:

An := {dn(X) ≥ δ}, Bn := {dn(X) ≥ δn}

For all n ≥ n∗, An ⊆ Bn. Thus, for all n ≥ n∗

P{dn(X) ≥ δ} ≤ P{dn(X) ≥ δn}.

Notice that then, using that νn = o(1),

0 ≤ lim
n→∞

P{dn(X) ≥ δ} ≤ lim
n→∞

P{dn(X) ≥ δn} = 0.

Because this holds for any choice of δ > 0 and any t, we have proven the stated result.

Lemma 6. Under Assumptions M and R,

∥SBn ∥∞ = OP (Bn

√
log p).

Proof. Using Assumptions M and R, the proof of Lemma 4 implies that

P

{
∥Sn∥∞ ≥ c̃Bn

(
log(2p/ε)√

n
∨
√
log(2p/ε)

)}
≤ ε.

Using Lemma 4.6 of Chernozhuokov et al. [2022] and Lemma 5, notice that

bn(X) := P

(
∥SBn ∥∞ > c̃Bn

(
log(2p/ε)√

n
∨
√
log(2p/ε)

)
| X
)

≤ ε+ oP (1). (1)

Define the event An := {bn(X) > ε+ η} for any η > 0. Then the earlier statement implies
that P (An) = o(1). Now, by the law of total expectation and the law of total probability,

P

(
∥SBn ∥∞ > c̃Bn

(
log(2p/ε)√

n
∨
√
log(2p/ε)

))
= E[bn(X)]

= E[bn(X) | An]P (An) + E[bn(X) | Ac
n]P (Ac

n)

= E[bn(X) | Ac
n] + o(1) (Set η = o(1))

≤ ε+ o(1).

It then follows, using the same logic as in Lemma 4, along with Assumption R, that

∥SBn ∥∞ = OP (Bn

√
log p).

We now prove the results from the main text.
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Theorem 1 (High-dimensional k-FWER exceedance control for small k, one-sided). Consider
the method of Algorithm 2.1 or 2.2 in Romano and Wolf [2007] with test statistics Tn of
hypotheses {H0,j}j∈[p] and critical values ĉn,K(1−α, k) given by the 1−α quantile of SBn,K,[k]
under PB. Assume that k is fixed (i.e., not growing with n, p). Then under Assumptions M
and R:

(i) lim supn,p→∞ k-FWERP ≤ α.

(ii) If H0,j is false and θj(P ) > 0, then the probability that the step-down method rejects
H0,j tends to 1.

Proof. We consider Algorithm 2.1 from Romano and Wolf [2007], which at each stage takes
as inputs critical values ĉn,K(1 − α, k) and a vector of test statistics Tn; we denote this as
RW-2.1(Tn, ĉn,K(1− α, k)).

The choice of critical values we will use is based on a bootstrap of the 1− α quantile of
the k-max:

ĉn,K(1− α, k) := 1− α quantile of SBn,K,[k] | X.

As in Romano and Wolf [2007], define I(P ) to be the set of indices of true null hypotheses
under P . Note that, for any K ⊃ I(P ),

ĉn,K(1− α, k) ≥ ĉn,I(P )(1− α, k)

because for anyK ⊃ I(P ), and under any distribution, SBn,K,[k] ≥ SBn,I(P ),[k] almost surely (i.e.,
the k-max statistic can only get larger if we include more test statistics without dropping
the others). As such, Theorem 2.1 (i) holds, and we conclude that RW-2.1(Tn, ĉn,K(1−α, k))
delivers:

k-FWERP ≤ P
{
k-max (Tn,j : j ∈ I(P )) > ĉn,I(P )(1− α, k)

}
.

Specifically, then, it is sufficient to show that

lim sup
n,p

P
{
k-max (Tn,j : j ∈ I(P )) > ĉn,I(P )(1− α, k)

}
≤ α.

To continue to use the notation of Romano and Wolf [2007], let θ̂n,j := X̄n,j. Since θj(P ) ≤ 0
for j ∈ I(P ), it follows that, almost surely,

k-max (Tn,j : j ∈ I(P )) = k-max
(√

nθ̂n,j : j ∈ I(P )
)

≤ k-max
(√

n
[
θ̂n,j − θj(P )

]
: j ∈ I(P )

)
= k-max (Sn,j : j ∈ I(P ))

and therefore

P
{
k-max (Tn,j : j ∈ I(P )) > ĉn,I(P )(1− α, k)

}
≤P

{
k-max (Sn,j : j ∈ I(P )) > ĉn,I(P )(1− α, k)

}
.
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If we can show that the limit of the quantity on the right-hand side is no greater than α,
the proof is complete. However, Theorem 2.2 of Ding et al. [2025] delivers exactly that, for
any K,

P
{
Sn,K,[k] > ĉn,K (1− α, k)

}
≤ α + o(1)

under Assumptions M and R. So, chaining inequalities, we note that

k-FWERP ≤ P
{
Sn,I(P ),[k] > ĉn,I(P ) (1− α, k)

}
≤ α + o(1)

and so

lim sup
n,p→∞

k-FWERP ≤ α

which is precisely what we wanted to show.
To prove the second statement, consider the H0,j corresponding to all θj(P ) > 0. Note

that, for the Gaussian multiplier bootstrap, using Assumptions M and R, by the tail inequality
Equation 1 in the proof of Lemma 6,

ĉn,[p] (1− α, k) ≤ ĉn,[p] (1− α, 1) = OP

(
Bn

√
log p

)
.

Furthermore, each Sn,j =
√
n
[
θ̂n,j − θj(P )

]
has a limiting distribution, so

Tn,j =
√
nθ̂n,j =

√
n(θ̂n,j − θj(P )) +

√
nθj(P )

P−→ ∞.

However, because
√
n grows faster than Bn

√
log p by Assumption R, we have that also

Tn,j

Bn

√
log p

P−→ ∞.

Therefore, with probability tending to one, Tn,j > ĉn,[p] (1− α, k), resulting in the rejection
of H0,j in the first step of Algorithm 2.1, so long as θj(P ) is fixed or approaches zero slower

than a rate of Bn

√
log p/n.

The asymptotic validity of the streamlined Algorithm 2.2 follows immediately from having
proved this, as it does in the Romano and Wolf [2007] proof of Theorem 3.3, given fixed
or slow shrinking θj(P ), using the same logic as for the proof of the second statement, i.e.,
min (Tn,j : j /∈ I(P )) is diverging at rate

√
n, and if any θj(P ) = 0 then max (Tn,j : j ∈ I(P )) =

OP (Bn

√
log p).

Theorem 2 (High-dimensional k-FWER exceedance control for small k, two-sided). Consider
the method of Algorithm 2.1 or 2.2 in Romano and Wolf [2007] with test statistics |Tn| of
hypotheses {H̃0,j}j∈[p] and critical values ĉn,K(1−α, k) given by the 1−α quantile of |SBn,K |[k]
under PB. Assume that k is fixed (i.e., not growing with n, p). Then under Assumptions M
and R:

(i) lim supn,p→∞ k-FWERP ≤ α.

(ii) If H̃0,j is false and θj(P ) ̸= 0, then the probability that the step-down method rejects
H̃0,j tends to 1.
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Proof. We again start by considering Algorithm 2.1 from Romano and Wolf [2007], which
at each stage takes as inputs critical values ĉn,K(1−α, k) and a vector of test statistics |Tn|;
we denote this as RW-2.1(|Tn|, ĉn,K(1− α, k)).

The choice of critical values we will use is based on a bootstrap of the 1− α quantile of
the k-max of absolute values:

ĉn,K(1− α, k) := 1− α quantile of |SBn,K |[k] | X.

As in Romano and Wolf [2007], define I(P ) to be the set of indices of true null hypotheses
under P . Note that, for any K ⊃ I(P ),

ĉn,K(1− α, k) ≥ ĉn,I(P )(1− α, k)

because for any K ⊃ I(P ), and under any distribution, |SBn,K |[k] ≥ |SBn,I(P )|[k] almost surely

(i.e., the k-max statistic can only get larger if we include more test statistics without dropping
the others). As such, Theorem 2.1 (i) holds, and we conclude that RW-2.1(|Tn|, ĉn,K(1−α, k))
delivers:

k-FWERP ≤ P
{
k-max (|Tn,j| : j ∈ I(P )) > ĉn,I(P )(1− α, k)

}
.

Specifically, then, it is sufficient to show that

lim sup
n,p

P
{
k-max (|Tn,j| : j ∈ I(P )) > ĉn,I(P )(1− α, k)

}
≤ α.

To continue to use the notation of Romano and Wolf [2007], let θ̂n,j := X̄n,j. Since θj(P ) = 0
for j ∈ I(P ), it follows that, almost surely,

k-max (|Tn,j| : j ∈ I(P )) = k-max
(√

n|θ̂n,j| : j ∈ I(P )
)

= k-max
(√

n
∣∣∣θ̂n,j − θj(P )

∣∣∣ : j ∈ I(P )
)

= k-max (|Sn,j| : j ∈ I(P ))

and therefore

P
{
k-max (|Tn,j| : j ∈ I(P )) > ĉn,I(P )(1− α, k)

}
=P

{
k-max (|Sn,j| : j ∈ I(P )) > ĉn,I(P )(1− α, k)

}
.

If we can show that the limit of the quantity on the right-hand side is no greater than
α, the proof is complete. However, Theorem 2.2 and Remark 2 of Ding et al. [2025] delivers
exactly that, for any K,

P
{
|Sn,K |[k] > ĉn,K (1− α, k)

}
≤ α + o(1)

under Assumptions M and R. So, chaining inequalities, we note that

k-FWERP ≤ P
{
|Sn,I(P )|[k] > ĉn,I(P ) (1− α, k)

}
≤ α + o(1)

and so

lim sup
n,p→∞

k-FWERP ≤ α
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which is precisely what we wanted to show.
To prove the second statement, note that, for the Gaussian multiplier bootstrap, using

Assumptions M and R, by the tail inequality Equation 1 in the proof of Lemma 6, and using
the insight from Remark 2 of Ding et al. [2025] that quantiles for absolute values are identical
to quantiles for a related 2p dimensional problem without absolute values,

ĉn,[p] (1− α, k) ≤ ĉn,[p] (1− α, 1) = OP

(
Bn

√
log p

)
.

Now notice that each Sn,j =
√
n
[
θ̂n,j − θj(P )

]
has a limiting distribution, so consider that

for the H̃0,j corresponding to all θj(P ) > 0 that

Tn,j =
√
nθ̂n,j =

√
n(θ̂n,j − θj(P )) +

√
nθj(P )

P−→ ∞

and that for the H̃0,j corresponding to all θj(P ) < 0 that

Tn,j =
√
nθ̂n,j =

√
n(θ̂n,j − θj(P )) +

√
nθj(P )

P−→ −∞.

However, because
√
n grows faster than Bn

√
log p by Assumption R, we have that also for

all H̃0,j for which θj(P ) ̸= 0
|Tn,j|

Bn

√
log p

P−→ ∞.

Therefore, with probability tending to one, |Tn,j| > ĉn,[p] (1− α, k), resulting in the rejection

of H̃0,j in the first step of Algorithm 2.1, so long as θj(P ) is fixed or approaches zero slower

than a rate of Bn

√
log p/n.

The asymptotic validity of the streamlined Algorithm 2.2 follows immediately from having
proved this, as it does in the Romano and Wolf [2007] proof of Theorem 3.3, given fixed
or slow shrinking θj(P ), using the same logic as for the proof of the second statement, i.e.,
min (|Tn,j| : j /∈ I(P )) is diverging at rate

√
n, and if any θj(P ) = 0 then max (|Tn,j| : j ∈ I(P )) =

OP (Bn

√
log p).

Lemma 1 (High-dimensional CLT for the small k-max coordinate of approximate means).
Let Ŝn := Sn +Rn, and assume that ∥Rn∥∞ = oP (1/

√
log p). Further assume that k is fixed

(i.e., does not grow with n, p). If Assumptions M and R hold, then as n, p → ∞

sup
t∈R

∣∣∣P (Ŝn,[k] ≤ t
)
− P

(
N(0,Σ)[k] ≤ t

)∣∣∣→ 0.

Proof. The proof of this lemma proceeds following the strategy of Chernozhukov et al. [2023].
First, recall that the function t 7→ t[k] is 1-Lipschitz wrt to the sup-norm, meaning almost

surely ∣∣∣Ŝn,[k] − Sn,[k]

∣∣∣ = ∣∣(Sn +Rn)[k] − Sn,[k]
∣∣ ≤ ∥Rn∥∞.

Consider the event {∥Rn∥∞ ≤ ϵ}, as well as the event {(Sn+Rn)[k] ≤ t}. Then observe that

{∥Rn∥∞ ≤ ϵ} ∩ {(Sn +Rn)[k] ≤ t} ⊆ {Sn,[k] ≤ t+ ϵ}
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As such notice that

{(Sn+Rn)[k] ≤ t} = ({(Sn+Rn)[k] ≤ t}∩{∥Rn∥∞ ≤ ϵ})∪({(Sn+Rn)[k] ≤ t}∩{∥Rn∥∞ > ϵ})

and so

P (Ŝn,[k] ≤ t) = P ((Sn +Rn)[k] ≤ t) ≤ P (Sn,[k] ≤ t+ ϵ) + P (∥Rn∥∞ > ϵ).

We then have, using Assumptions M and R in addition to the high-dimensional CLT for the
k largest coordinate of Lemma A.6 in Ding et al. [2025] (which requires Assumption M):

P
(
Ŝn,[k] ≤ t

)
≤ P

(
Sn,[k] ≤ t+ ϵ

)
+ P (∥Rn∥∞ > ϵ)

= P
(
N(0,Σ)[k] ≤ t+ ϵ

)
+ o(1) + P (∥Rn∥∞ > ϵ) .

(Lemma A.6 + Assumption R)

We now need to apply an anti-concentration result, which can be found as Corollary A.1 of
Ding et al. [2025]. Letting G := N(0,Σ), it states, for any t̃,

P (t̃− ϵ̃ ≤ G[k] ≤ t̃+ ϵ̃) ≤ Ckϵ̃
√

1 ∨ ln(p/ϵ̃).

Thus, letting t := t̃− ϵ̃ and ϵ := 2ϵ̃,

P (t ≤ G[k] ≤ t+ ϵ) ≤ 1

2
Ckϵ

√
1 ∨ ln(2p/ϵ)

and so because k is fixed,

P (G[k] ≤ t+ ϵ) = P (G[k] ≤ t) +O
(
ϵ
√
1 ∨ ln(2p/ϵ)

)
meaning that

P
(
Ŝn,[k] ≤ t

)
≤ P

(
N(0,Σ)[k] ≤ t

)
+O(ϵ

√
1 ∨ log(2p/ϵ)) + o(1) + P (∥Rn∥∞ > ϵ) .

(Corollary A.1)
Then we may choose ϵ = ϵn = o(1/

√
log p) in such a way that we get that

P
(
Ŝn,[k] ≤ t

)
≤ P

(
N(0,Σ)[k] ≤ t

)
+ o(1).

From the reverse direction, note that

{∥Rn∥∞ ≤ ϵ} ∩ {(Sn +Rn)[k] ≤ t− ϵ} ⊆ {Sn,[k] ≤ t}

so it also holds that similarly, partitioning {(Sn+Rn)[k] ≤ t− ϵ} using {∥Rn∥∞ ≤ ϵ} and its
complement, that

P
(
Ŝn,[k] ≤ t

)
≥ P

(
Sn,[k] ≤ t− ϵ

)
− P (∥Rn∥∞ > ϵ) ,

and so using identical arguments as above we conclude that, uniformly in t,∣∣∣P (Ŝn,[k] ≤ t
)
− P

(
N(0,Σ)[k] ≤ t

)∣∣∣ = o(1),

proving the stated result.
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Lemma 2 (High-dimensional bootstrap for the small k-max coordinate of approximate
means). Let ŜBn := SBn +Rn, and assume that ∥Rn∥∞ = oP (1/

√
log p). Further assume that

k is fixed (i.e., does not grow with n, p). If Assumptions M and R hold, then as n, p → ∞

sup
t∈R

∣∣∣PB
(
ŜBn,[k] ≤ t

)
− P

(
N(0,Σ)[k] ≤ t

)∣∣∣ P−→ 0.

Proof. The proof of this lemma proceeds following the strategy of Lemma 1. Using the same
logic as the proof of Lemma 1, note that

PB(ŜBn,[k] ≤ t) = PB((SBn +Rn)[k] ≤ t) ≤ PB(SBn,[k] ≤ t+ ϵ) + PB(∥Rn∥∞ > ϵ).

Observe that, from Ding et al. [2025] Lemma A.8 and Lemma 5, using Assumptions M and
R and the triangle inequality, that

sup
t∈R

∣∣PB
(
SBn,[k] ≤ t

)
− P

(
N(0,Σ)[k] ≤ t

)∣∣ = oP (1).

This equation then plays the role of Lemma A.6 of Ding et al. [2025] in the proof of Lemma 1;
the stated result proceeds from this observation, continuing with identical logic as in Lemma
1, noting that if ∥Rn∥∞ = oP (1/

√
log p) then PB(

√
log p∥Rn∥∞ > ϵ) = oP (1) for all ϵ > 0

by Lemma 3.

Corollary 1 (High-dimensional CLT for the small k-max studentized coordinate). If Assumptions
M and R hold, and Bn = O(1) and k is fixed (i.e., does not grow with n, p), then, by
application of Lemma 1, as n, p → ∞

sup
t∈R

∣∣∣∣P ((Λ̂−1/2Sn

)
[k]

≤ t

)
− P

(
N(0,Σ0)[k] ≤ t

)∣∣∣∣→ 0.

Proof. Let Ŝn := Λ̂−1/2Sn. To show this corollary, note that

Rn = Λ̂−1/2Sn − Λ−1/2Sn = (Λ̂−1/2 − Λ−1/2)Sn,

and thus we can use the machinery of Lemma 1 to prove the desired result so long as we can
show that ∥Rn∥∞ = oP (1/

√
log p).

Note that, by the sub-multiplicative induced matrix norm inequality,∥∥∥(Λ̂−1/2 − Λ−1/2
)
Sn

∥∥∥
∞

≤ ∥Λ̂−1/2 − Λ−1/2∥∞ ∥Sn∥∞ = ∥Λ̂−1/2 − Λ−1/2∥max ∥Sn∥∞

where the last equality follows from the fact that the max elementwise norm is equal to the
induced operator ∞-norm for diagonal matrices.

To control the first term on the right-hand side, we may turn to Kuchibhotla and
Chakrabortty [2022], Theorem 4.2, which shows that if Xij are sub-Weibull with parameter
α = 1 (i.e., sub-exponential, granted by Assumption M), then Assumption R ensures that

∥Λ̂− Λ∥max = oP (1/ log
2 p).
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To see this, note that the condition discussed in Remark 4.1

(log p)2/α−1/2 = o
(√

n(log n)−2/α
)

is satisfied under Assumption R, meaning that ∥Σ̂− Σ∥max = OP

(√
log p/n

)
if Bn = O(1)

(where ∥ · ∥max is the maximum elementwise norm). As a consequence, Assumption R also

delivers that ∥Λ̂ − Λ∥max ≤ ∥Σ̂ − Σ∥max = oP
(
1/ log2 p

)
, and thus ∥Λ̂−1/2 − Λ−1/2∥max =

oP
(
1/ log2 p

)
as well using a Taylor expansion argument and part (ii) of Assumption M.

For the second term, note that, using Lemma 4 via Assumptions M and R, that ∥Sn∥∞ =
OP (Bn

√
log p) = OP (

√
log p), where the last equality follows becauseBn = O(1) by assumption.

Putting everything together then, we conclude∥∥∥(Λ̂−1/2 − Λ−1/2
)
Sn

∥∥∥
∞

≤ oP
(
1/ log2 p

)
OP (

√
log p) = oP (1/ log

3/2(p)) = oP (1/
√
log p).

Corollary 2 (High-dimensional bootstrap for the small k-max studentized coordinate). If
Assumptions M and R hold, and Bn = O(1) and k is fixed (i.e., does not grow with n, p),
then, by application of Lemma 2, as n, p → ∞

sup
t∈R

∣∣∣∣PB

((
Λ̂−1/2SBn

)
[k]

≤ t

)
− P

(
N(0,Σ0)[k] ≤ t

)∣∣∣∣ P−→ 0.

Proof. The proof of this corollary proceeds just as the proof of Corollary 1. Let ŜBn :=
Λ̂−1/2SBn and

Rn = Λ̂−1/2SBn − Λ−1/2SBn = (Λ̂−1/2 − Λ−1/2)SBn ,

and thus we can use Lemma 2 to prove the desired result so long as we can show that,
sufficiently, ∥Rn∥∞ = oP (1/

√
log p).

Note then that almost surely, as in Corollary 1,∥∥∥(Λ̂−1/2 − Λ−1/2
)
SBn

∥∥∥
∞

≤ ∥Λ̂−1/2 − Λ−1/2∥max

∥∥SBn ∥∥∞ .

Using the same arguments as in the proof of Corollary 1, we conclude that ∥Λ̂−1/2−Λ−1/2∥∞ =
oP (1/ log

2 p). By Lemma 6 we have that ∥SBn ∥∞ = OP (Bn

√
log p), and under Bn = O(1)

then ∥SBn ∥∞ = OP (
√
log p). Thus, we complete the proof as in Corollary 1.
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